Micro Fiche Scan

Name of device(s) tested:
AXDF

Test description:
AXDP V2 DREVR PROGR (5D

MAINDEC Number or Package Identifier (after SEP 1977):
CHODPAD

Fiche Document Part Number:
AH-FGE10A-MC

Fiche preparation date unknown, using copyright vear:
1984

Image resolution:
8-bit gray levels, max. quality for archiving

COPYRIGHT (C)y 1984 by dlilgliltlall

-

Qx

B1
IDENTIF1CATION

PRODUCT NAME: AC-UO36A-MC

PRODUCT NAME: (CHQDPAG XXDPV2 Drvr Progr Gd
PRODUCT DATE: 8 Oct 1984

MAINTAINER: Low End Diegnostic Engineering

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment gorYorotnon. Digital Equipment Corporation assumes
no responsibi

No responsibility is assumed for the use or reliability of
software on equipment that is not supplied by Digital or its
affilisted companies.

Copyright (C): 1984 by Digital Equipment Corporation
The following are trademarks of Digital Equipment Corporation:
Digital, PDP, UNIBUS, MASSBUS, DEC, DECUS, DECtape, DEC/X11

ity for any errors that may appear in this document.

SEQ 000

Cl

Page 2
SEQ 0002
XXDP V2

Driver Programmer's Guide

Manual Revision: 0.1

XXDF Version: 2.0
Maintained by: MSD Diagnostic Engineering
Revision History:
Revision Date By Description
0.0 1-Jun-84 DAL Original Document

0.1 B-0Oct-84 LSP Reformat

- v RS v e — — - -

D1

Page 3
SEQ 0003

Table of Contents

----------------- Page
1.0 Introduction 4
2.0 Device Driver Layout S
3.0 Device Driver Functions 11
4.0 Writing & Driver 15
5.0 Device Driver Characteristics 17
6.0 Glossory 19
7.0 Biblc ohy 19

Appendices
Appendix: A - Driver Example
Appendix: B - Assembly and Linking Instructions
Rppendix: C - Driver Equates
Appendix: D - Device Type Codes

- e e G S e — ————— — -

1.0

El

Page 4

Introduction

This document is intended as a guide to those who need
to understand and/or write device drivers for tne XXDP+
VZ system. Section 1.0 below describes the basic
differences between V1 and V2 drivers, Section 2.0
outines the ph¥sico; layout of the driver., Section 3.0
describes the functions performed by drivers while
section 4.0 offers advice to those intending to
maintain or write a device driver themselves.

Throughout this document there are nnng references to
the mnemonics of the file structure. These are listed
in the glossary for convenience. A desription of the
file structure may be found in the file structure
document listed in the biblography.

Differences between V1 ang V2 Drivers

One major purpose of XXDP+ V2 is to simplify the
maintenance of XXDP components. A facet of this
simplification is to make drivers as uniform as possible.
To this end:

8) Functionality which seemed more file-oriented then
device-oriented (e.g. file search) was migrated to
a front-end, which is now incorpora‘ed in a
version of UPDZ2 and other utilities.

b) Read-only and Read-write functionality was
recombined so that a single driver may be used
both by the Monitor and by utilities.

c) Some functional aspects of individual grivers were
changed. For instance, most drivers will now
support two units (previously a different copy
was needed for each unit).

d) The layout of all drivers was made as uniform as
possible.

e) Disk organization has been made uniform (MFD
‘variety #1’' has been retired).

f) Some functional sspects of the Utilities were
changed. UPD2 will no longer permit an Image
copy between devices with differing sizes, and
will not copy the Monitor during a File copy.

—- - - — . ———— - -

SEQ 0004

N
O

c.l

F1

Page 5

Compatibility

anpotibilitx between V2 and V1 has been maintained,
with the following exceptions:

1) The V1 DL and DM disk layout did not allow
for & 32k Monitor. If the V2 Monitor is installed
on & V1l medium, the first file (or two) after the
monitor area will be corrupted.

2) The MFD variety &1 has been retired for the DB,
DD. DU end DY drivers. V2 drivers may be used to
read or write V1 media. V] drivers may be used
to read V2 media, but not to write. (Excegt in
the cese: V1 MS drivers will not read V2 M5 tapes.)

3) V2 media will have the octal constant 1002 at
octal displacement 14 (the old MFD2 pointer) in
the MFD. V1 medie will have some other value.
The MFD is not currently read by most drivers, so
this fact is not used.

4) The V1 MM and MS tape layouts each had two Monitors
at the tape beginning, selected according to what
device wes be-ng booted. The V2 layouts have only
one Monitor as the first file on the tape.

Device Driver Layout

This section describes the lexical structure of XXDP
Version 2 device drivers. The requisite components are
outlined below with descriptions as to their functions
and usage. Definitions of terms relating to file
structure may be found in (AC-5866A-M0) CHQFSAQD XXDP.
File Structure Document.

Driver Revision History

This section contains a brief history of attributed
source code revisions, as is standard for DEC software.

5EQ 0005

rn mn
no
—

2.2.2

Gl

Page 6

Symbol ic Equates
Device-Independent Equates

This section contains definitions for data structure
offsets and other equates which are more or less common
to all drivers.

1) DIRBLK Offsets

These equates describe the DIRBLK structure in
the driver, discussed below. The DIRBLK contains a
description of the (disk) layout.

2) DDB Equates

These equates describe the ‘Device Descriptor
Block' (DDB), a data structure which is found in
the utilities, and a subset of which is found in
the Monitor. The DDB provides the driver's deta
interface. The driver's Parameter Table will
overlay or be copied to the DDB.

3) Device Command Codes
These equates are the commaend codes, issued by a
utility or the monitor, to which the driver
responds. Some command codes, c.g; WRITES, ere
used by all drivers. Others mey specific to

device type (e.?. bnd-blockina) or to the device
itself (e.g.RFSSFN- reformat RX02 single density).

4) Parsmeter Table Equates
When the driver is loadedby a utilisxé its
parameter table is copied into the . These
equates are thus actually DDB offsets.
S) Device Returned Status Byte
These equates describe the meaning of the bits in
the above-mentioned DVSE byte. They concern disk
density and tepe drive status.
Device-Dependent Equates
These are equates particular to the device and driver code.
1) Program Equates

These equates are typically mnemonics (e.g. LF
or CR) used for convenience in the code.

2) Device Equates

These equates describe internal device codes,
status words, commands, and packet formats.

W R S —————————— e —

SEQ 0006

2.3
2.3.1

H1

Page 7

Data Structures
Device Parameter Table

This data structure begins the driver's actual code.
When the the Monitor is CREATED by the UPDATE utility
the driver is nded to the end of the monitor and
this table overlays the Monitor's DDB. When the driver
is_loaded BBB. utility, this table is copied into the
utility's DDB, addresses being relocated ropriately.
2;00 t n:hgnnsugn. the :;21: is referenced -rgsly oo

rough this copy; . ,driver's copy is used on y
the driver's INIT routine in enticipation of the nexz
load. All driver routines assume that R5 points to the
command register entry in the DDB.

(Note: in order to save space, some of the parameters
have been g.von INITIAL values and functions which are
not related to their functions during execution.)

A Parameter Table Example is:

- W e e e

PARAM: DISPAT ;:DISPATCH ROUTINE
.WORD "DZ ;:DRIVER NAME
.BYTE BBSUP$;DEVICE CODE
.BYTE 44 ;RETURNED STATUS (INITIAL DEV%EEE)
.WORD BCODE ;BOOT CODE OFFSET
UNIT: .BYTE O sUNIT ¢ (INITIAL REV @)
ERRB: .BYTE 0 ;:ERROR STATUS (INITIAL PATCH &)
CMDREG: 174400 ;COMMAND REGISTER ADDR
WCOUNT: 0O ;WORD COUNT
BUSADR: 0 ;:BUS ADDRESS
BLOCK: O :BLOCK NUMBER
coMD: O ; COMMAND
DIRPTR: DIRBLK ;POINTS TO 1ST DIR BLOCK.
gigg:g: 0 ;FOR MONITOR COMPATIBILITY

1) Dispatch Routine Address
This entry is the address of the dispatch
routine, which determines which driver routines

to invoke. All driver services are provided
through this entry,

2) Driver Name
This entry is the device's two byte mnemonic name.

5£Q 0007

I1

Page 8
3) Device Code
This static byte is used to indicate that the

device has special features of interest to
utilities. Current flags are:

BBSUP$ - Device provides bad block support.
NODIR$ - Not a directory device

TAPED$ - Tape device

REFDN$ - Supports single/double density reformat.
MULUN$ - Driver supports 2 units/driver

NOREN$ - Device does not support file rename.
FLOADS - Device may have floating address.

4) Device Status

This byte is returned by some drivers in response
to inquiries concerning disk density or tape
status. Current flags are:

DDDEN$ - Disk is double density
BOTTP$ - Tape is at physical bot
TMKTP$ - Tepe is at tape mark
EOTTPS - Tepe is at physical eot

(The INITIAL velue of this Lyte communicates a device
type code to the Moniter .mmediately after the
driver is loaded. See sppendix D.)

5) Boot Code Offset

This entry contains the displacement to the boot
code, i.e. to the end of driver code. This is
used by the Monitor and does not further concern
the driver itself.

6) UNIT

This byte entry communicates the device unit &
§8N%s§)driver. This is commonly addressed as
(The INITIAL value of this byte communicates the
version number of the driver.)

7) ERRB

This byte entry is used by the driver to
communicate errors and (sometimes) attention
conditions. It is tested immediately prior to
dgriver exit (as XER(RS)). i

(The INITIAL value of this byte communicates the
patch number of this driver.

8) CMDREG
This is the address of the primary device command

register. It is the focus of the DDB and is used
by the driver to access all device registers,

SEQ 0008

2.3.2

2.3.3

2.3.4

9) WCOUNT, BUSADR, BLOCK

These entries are used to communicate to the
driver, the count, address, and block number of
a transfer command.

10) CoMD

This entry contains the coded command to be
performed by the driver. This code is
interpreted in the driver's dispatch routine.

11) DIRPTR

This entry points to the driver data structure
DIRBLK, a table which describes the physical

layout of a disk. This gonntcr is the only E
exception to the rule that local entries in this
table (as opposed to their coﬁuoo in the DDB)

are not used. The driver's INIT routine may toggle
this pointer for some "two-unit" drivers to point to
an alternate DIRBLK structure to be active on the
next load. This feature permits one driver to be used
with two units with differing densities, etc.

DIRBLK

This data structure communicates particulars of the
device's physical layout. Its first several entries
mirror the structure of a variety #2 MFD, which is now
used for non-bad-blocking devices as weli. Note that
for non-bad-blocking devices, the data contained in
DIRBLK is constant and the MFD need never be actuall
read. For some drivers which supgort two units, DIRBLK
will be replicated, and DIRPTR will be toggled back and
forth by the driver's INIT routine.

Local data

This section contains data structures used intern.llz by
the driver to store state information, construct packets,
etc. Some unit-dependent local data may be appended to_
DIRBLK to take advantage of DIRBLK switching for two-unit
drivers.

Error Messages

This section contains the error messages printed by the
driver. The utilities may append information to such
messages, e.g. if the driver prints "RD ERR”, the utility
will note the error through the error byte XER(R5), and
may append, for example, "IN INPUT DIRECTORY",

-—— — e ——

c——— ——

SEQ 0009

2.4
2.4.1

2.4.2

2.4.3

2.4.4

K1

Page 1)

Executable Code
DISPATCH Routine

The dispatch routine receives control from the utility or
monitor, examines the command code in the DDB, and gives
control to subordinate routines. Dispatch may, in
addition, perform code sequences common to its sub-
ordinates or indeed perform some simple commands. Just
gruor to exit, the dispatch routine tests the error byte
ER(RS) so that the calling utility may make an immediate
branch on error. At present, some dispatches are "test
and call” and some table driven. In drivers with more
than 4 such tests, a table driven approach may save
space.

INIT Routine

The init routine receives control from dispatch. Its

primary function is to Ycrfora any gtzsica initiel-

ization and to set_local DIRBLK varisbles to reflect unit

characteristics. It is assumed to have been called

immediately after the driver is loaded. Init may also

g:rfg;m auxillary functions, such as determining device
ns:ty.

DRIVER Routine

The driver routine receives control from dispatch. It
commonly handles I/0 transfers. In many cases, the code
in this routine is largely unchanged from that in V1.

Auxillary Routines
These routines are called by DISPATCH, INIT and DRIVER.

SEQ 0010

3.0
3.1

L1

Page 11

Device Drivers Functions
All Drivers

There is a minimal set of functions which all drivers are
expected to perform:

This function is invoked once per device-unit,

either after the Monitor has been loaded or immediately
after a utility 'loads’' a driver. Note that if a

utility finds the requested driver to be already present,
it will not load a frcsh_copx. Before INIT$ is invoked,
parameter table information has been copied (or in the
case of the Monitor, overlayed) on to the DDB; in
particular DIRPTR has been converted from relative to
absolute address (but only on a fresh load).

Tasks to be performed at this time include device
initialization (e.g. DU performs an initialization
sequence at this time when the value of a local veriable
signifies that it is a fresh 'load’') end intialization
of local variables. Disk drivers which s rt bed-
blocking use this occasion to read the disk MFD and

set DIRBLK variables accordingly. Some drivers which
support two units with dsffcrsn, characteristics (e.g.
density) will toggle the (local) pointer DIRPTR at this
time so that on next ‘load’', a different DIRBLK will

be used.

You will see that, in those drivers which have a GTMFD1
routine to read the MFD, a DIRBLK flag XXMFID is checked
before any disk read is done. This flag is raised b
the driver loading routine in the utility when 8 ZE
directive is in progress - in order to avoid reading
junk from a disk which is sbout to be cleared. The
IRBLK structure is updated by the utility during the
ZERQO execution.

RES$FN

This function is invoked by the Monitor to read some_
blocks from the Monitor image, presumably after possible
corruption.

At this time the code relocates the requested block
number by the starting Monitor block number. The code
may assume that this entry in DIRBLK is either a
constant or has been updated during INIT$ processing.

- e — - —

SEQ 0011

M1

Page 12

This function is used by all drivers except LP:.

It is invoked by the Monitor or the utility to_read

a block or series of blocks from the device. The word
count, buffer address and starting block number (for
direct access devices) are found in the DCB.

It is the driver's function to convert the word count
and block numbers if necessary, to initiate the transfer,
end to wait until successful completion. If an error is
detected, the driver may try to effect recovery (e.g.
several disk drivers now have ECC correction routines).
If recovery is impossible, failure is communicated by
setting the XER byte in the DDB to a non-zero value.

......

This function is used by all drivers. All comments
concerning READ$ above are applicable here.

SEQ 0012

3.2

_Nl

Page 13

Disk Drivers

Disk devices are all directory structured. This is
signalled to the utility by having a positive first entry
in the DIRBLK table. A disk driver may have functions in
addition to those above:

RED$FN

This function requests the read of an absolute
cylinder/track/sector from a bad-blocking device. It
is_invoked by the ZERO command execution in UPD2.
UPD2 places the c¥;|nder. track and sector addresses
of the bad-block File (determined from DIRBLK) into
the DDB and issues the call.

The format of the bad-block file is a list of
cylinder/track/sectors. The ZERO routine in UPD2 issues
a CMP$FN to convert these to block numbers, which it
uses to set the appropriate bit-maps.

DEN$FN

The ZERO routine in UPD2 needs to know the disk density
to find the correct location of the bad-block file.

The driver returns a flag in the DDB status byte DVSB.

0 = single densit
1= dougle densit;

RFS$FN,RFDS$FN

The DY driver performs hardware re-formatting of a disk
to single or double density (as communicated to UPD2
thro the ZERO command).

SEQ 003

3.3

B2

Page 14
Teape Drivers

Drivers for taR: devices (communicated via the device
code byte in the DDB and by a negative first word in
DIRBLK) provide a variety of functions not needed for
disk devices. Tapes are not directory devices - every
file is preceded by a header which contains the file name.
The logical end of tape is & double EOF. In addition to
those functions listed as common to all drivers above:

This function is invoked to set up the tape controller
for subsequent commands.

-- - - - -

......

This function is called to read a header.
SEFsTP

This function is invoked to skip to an EOF, i.e. to
skip the remainder of a file.

- - - -

This function is called to write an EOF on tape.
SETs$TP

This function is called to skip to the logical end
of tape, i.e. after all files.

STASTP

This function is invoked to return the tape status

(at BOT.THK.SBEsIcol EOT) through the device status
byte in the . The two existing tepe drivers, MM
and M5 spproach this dufferentlx. MM backspaces the
tepe and then forwsrd spaces. If BOT was detected
during the backspace, this is returned as status.
Utherwise the status detected during the forward space
is retyrngd.The M5 driver interrogates the controller
in real time.

SEQ 0014

L

Page 15

Writing a Driver

The best approach to writing a driver is to model it on
existing ones. The drivers that presently exsist provide
8 wide variety from which to choose, and are brief ¥
characterized along several dimensions at the end of this
section. Some points to note:

1) Much of the driver preamble is dcvicc-in::gendont and
may be copied wholesale. Look at the presmble of UPD2
to determine the symbolic command codes etc. with
which the utilities and drivers communicate.

2) The device-dependent components of the preamble
follow informal conventions, e.g. control register
names are often similar from device to device. You
mey be able to copy this, with minor changes, from
some driver with a similar communications structure.

3) The parameter tables of all drivers are quite similar.

4) The DIRBLK specifies the ph!sicll layout of & disk
device. Be careful how you lay out & disk structure -
do not lock yourself into s structure which cennot be
essily expanded to meet similar but larger devices.
For example, you might went to put the itor image
towards the beginning of the disk, before the UFD and
Bitmaps, so that the bootstrap routine doesn’'t have
to contend with these areas as they change from device

to device.
Arn example of & good structure might be:
Block Purpose
0 Secondary bootstrap
1 MFD1 : i
3 Start of Monitor image
. First UFD block
IS. « N First bit map
35. « N M # of blocks to presllocate

Remember that, even though they are linked, UrD and
bit map space are_allocated contngugusly by UPD2 at
device ZEROing. It is, in fact, this contiguity which
results in the possibility that the actual parameters
may differ among bad-block ing devices.

5) The DDB error byte ERR(RS) is used to communicate
failure. The driver must test this byte immediately
before exiting. Note that the polarity of this device
is used to communicate different flavors of failure:
e.g. -1 often means 'device full'.

SEQ 0015

6)

7)

8)

9)
10)

De

Page 16

If you plan to have your driver supgort 2 disparate
devices at the same time (c.g. bad-blocking devices
are disparate because the actual location of some
things may change. There is a limit to this: the
boot routine may assume a constant location for the
Monitor image), you may want to toggle between two
DIRBLI's. Be careful, in this case, to remember that
the parameter table acguollz overlays the DDB when
the driver is linked with the Monitor; toggle before
any changes are made to DIRBLK.

The DRIVER routine in many drivers disambiguates some
of the commands. This is due to historical reasons
and commonality of some code.

Driver code must be location-independent. In pert-
icular, this means that if addresses of local dats
are manipulated, they must be calculated dynamically
rather than by the linker. E.g.

MOV #TABLE.,RO ; will not get the address of
: TABLE

but

MOV PC,.RO
ADD @TABLE-..RO ; will work

All code must be processor independant.

The disk layout (reflected in DIRBLK) of some bad-
block ing devices depends on the medium density. When
a driver is 'loaded’ as a result of a ZERO command,
the MFD refreshed indicator in the DIRBLK is set by
UPD2 prior to invoking the INIT function. This is
tested in the driver's GTMFD]1 routine to bypass an
MFD read (the MFD may be). The UPD2 ZERO
command will issue a DENSFN to the driver to
determine the disk density, and will compute the
bad-block file and bad-block dependent attributes
(first UFD, bitmap, and Monitor) accordingly. It will
not, however, set up the remaining density-dependent
DIRBLK entries: this should be done by the driver's
gSIT ::de with consideration that the MFD might not
read.

The MFD for all devices is written by UPD2 during a
ZERO command, and, for bad-blocking devices, must be
referenced (because it contains veriable information)
b{ the driver during an INIT function to update the
DIRBLK. The variables to be updated ere starting UFD,
Monitor, and bitmap block numbers. Except for this
reference, the driver need not concern itself with
the MFD variety or structure.

5EQ 0016

EC

Page 17

5.0 Pevice Driver Characteristics

08

oC

DL

- RJPO‘.S.6

Type

Bad-block ing

Error-recovery

Communications
IRBLK

Two units/driver
Dispatch

- TUS8

Type
Bad-blocking
Error-recovery
Communications
DIRBLK

Two units/driver
Dispatch

- RLO1,02

Type
Bad-block ing
Error-recovery
Communications
DIRBLK

Tgo units/driver
Dispatch

- RK06,7

Type
Bad-blocking
Error-recovery
Communications
DIRBLK .
7|-lo units/drver
Dispatch

- RM02,03

Type k
Bad-blocking
Error-recovery
Communications
DIRBLK

Two units/driver
Dispatch

Disk

No

ECC correction,retry
Device registers
Constant

a5
Table

ai'k (directory structured tape)

Retry
Packet
Constant

es
Teble

Disk

Yes

Retry

Device Registers

Veriable according to bad-blocking
and dens:ty.

Yes

Table

Disk

Tes _

ECC correction,retry

Device Registers .
¥areab1¢ according to bad-blocking
es

Table

Disk

Yes -

ECC correction,retry

Device Registers]
¥or|ab1e according to bad-blocking

es
Table

— - — ———————— -

SEQ 0017

DU - UDA S0,RD/RX

oY

LP

MS

Type)
Bad-blocking
Error-recovery
Communications
DIRBLK

Two units/driver
Dispatch

g 2 5 2 ¥ B B

- RX02,01 (does not

Type
Bed-blocking
Error-recovery
Communications
DIRBLK

Two units/driver
Dispatch

- Line printer

Type
Bad-blocking
Error-recovery
Communications
DIRBLK

Two units/driver
Dispatch

- TMO2

Type
Bad-block ing
Error-recovery
Communications
DIRBLK

Two units/griver
Dispatch

- 1504/7511

Type -
Bad-blocking
Error-recovery
Communications
DIRBLK

Two units/driver
Dispatch

¥ 8 4 0 & &8

Page 18

Disk
Trnnsenrent to driver

MSCP

Variable according to drive capacity

es
Test end call
boot RX01)
Disk

No

Retry
Device Registers
Variable according to RX01/02

Yes
Table

Line printer
Huh?

L3

Device registers
Constant

No
Test and ceall

Tape

Retry :
Device registers
Constant -1

Yes

Table

Tape

Retry
Packet
Constant -1

fes
Table

o — —— -

SEQ 0018

G2

Page 19
SEQ 0019

6.0 GLOSSARY

IRG - Interrecord gap. The gop that is written
between records on magtape.

MFD - Master File Directory

RAD-50 - RADIX-50. A method of encoding 3 ASC11
characters into one 16 bit word.

UFD - User File Directory.
VIC - User Identification code.

7.0 Bibliography

XXDP+/SUPR USE MAN, CHQUS??, AC-F348F-MC, current
XXDP+ FILE STRUCT DOC, CHQFSAO, AC-S866A-MO, April, 1981

He

ARppedicies

Appendix A - Driver and Boot Example

The following is an example of & working driver (DB:), edited
slightlly to explicate structure.

.NLIST CND
.TITLE RJP04,5,6 - XXDP. V2 DRIVER

.SBTTL DRIVER REVISION HISTORY

: REV DATE CHANGE
: 1.0 31-JUL-78 INITIAL ISSUE
: 1.1 17-NOV-78 MAKE COMPATABLE WITH BIG DRVCOM
: 2.0 11-AUG-80 XXDP+ V1.1 COMPATIBLE
: REMOVED READ-ONLY CODE
: ADDED XERCRS) AS RESULT STATUS
- ADDED INIT ROUTINE
: REMOVED CLEAR MAPS ROUTINE
: 21-FEB-84 CHANGE FOR V2, INCLUDING ECC CORRECT
: 06-MAR-84 TWO UNITS/DRIVER - GOT RID OF GTMFD1
: 18-MAR-84 TABLE DRIVEN DISPATCH
: 25-APR-84 INITIALIZE RETURNED STATUS BYTE
PAGE
_NLIST ME,CND
'NLIST MC
‘LIST MEB

SBTTL DEVICE-INDEPENDENT EQUATES

XDIR =0 ;1ST DIR BLOCK.

XDIRN = ;# OF DIR BLOCKS.

XMP = : 1MAP BLOCK #,

XMPN = :# OF MAP BLOCKS.

AMFD1 =10 ;MFD1 BLOCK #

XVERS =12 ;: XXDP VERSION # (1002 = VERSION 2)
AMXBK =14 :MAX BLOCKS WORD.

RSBK =16 :# OF BLOCKS TO RESERVE.

ITLVE =20 : INTERLEAVE FACTOR.

BOTBK =22 :B0OT_BLOCK.
MNEK =24 ;MONITOR CORE IMAGE BLOCK.
XMFID =26 :MFD REFRESHED INDICATOR.

SEQ 0020

. "DEVICE DESCRIPTER BLOCK (DDB) EQUATES
! DDB OFFSETS FOR R/W DRIVER
: DDB OFFSETS FOR

XREW
XWCTR
XWILD
XFLCNT
XSVMAP
XSVBLK
XSVDAT
XBKLGT
XLSTBK
XBUF
XSVCNT
XSVNAM
XSVEXT
X1STBK
XSV
XDN
XER
XCM
XWC
XBA
XDT
XCO
XDR
XXNAM
XBC
XNB
XCKSUM

SvC

LI B U B B B B A N N N NN N NN EERE RN

MONITOR ARE A SUBSET

-50
-36
-44

--- -- - - - -

;INDEX TO INHIBIT REWIND INDCATOR
: INDEX TO WRITE COUNTER

; INDEX TO WILDCARD INDICATOR

: INDEX TO FILE COUNT

; INDEX TO SERVICE ROUTINE (DRIVER)
:DRIVE NUMBER INDEX

;RESULT STATUS

:INDEX TO COMMAND REGISTER

;INDEX TO WORD COUNT

: INDEX TO BUS ADDRESS

;INDEX TO BLOCK NUMBER OR TAPE SKIP #
; INDEX TO COMMAND

;INDEX TO 1ST DIR BLOCK POINTER
:INDEX TO ASCII NAME IN DDB

: INDEX TO REQUESTED BLOCK COUNT

;INDEX TO LAST BLOCK # ALLOCATED
:CHECKSUM CALCULATION IN SEARCH

;ALTERNATE NAME

B o o R e R R R R R R R R R R R R R R R R R W SR WR R W W

INITS
READS$
WRITES
RES$FN

W= O

; gg{gIALIZE DEVICE AND BRING ON LINE
: WRITE

: RESTORE FUNCTION FOR MONITOR

: DISPATCH TABLE

- e e e e e S e R AR R e R R R S R S R W R R R R R R e W R R R R e R R e e

I R e e R R e R AR AR R R R R R R R R R e -

; DRIVER PERMITS MULTIPLE DEVICES

- — - — —

SEQ 0021

.PAGE

.SBTTL DEVICE-DEPENDENT EQUATES

RPWC
RPBA
RPDA
RPCS2
RPER1
RPOF
RPDC
RPEC1
RPEC2

RJREAD
RJWRITE
DONE
ERROR

- 2 :RJPO4 WORD COUNT REGISTER
= 4 :RJPO4 BUS ADDRESS REGISTER

=8 :RJPO4 DESIRED SECTOR/TRACK REGISTER
= 10 ;RJPO4 CONTROL STATUS REGISTER 2

= 14 iRJPO4 ERROR REGISTER 1

= 32 :RJPO4 QFFSETT REGISTER

= 34 :RJPO4 DESIRED CYLINDER REGISTER

= 44 :RJUPO4 ECC POSITION

= 46 :RJPO4 ECC PATTERN

=71 :RJP04 READ COMMAND
= 61 :RUP0O4 WRITE COMMAND

e — - -

S L L LR T T

LI i B I I I e S ————

-

SEQ 0022

.PAGE
S
.SBTTL XXDP DEVICE DRIVER PARAMETER TABLE ——

THESE PARAMETERS ARE USED IN COMMUNICATION WITH THE UTILITY

; PROGRAM '
PARAM: DISPAT ;DISPATCH ROUTINE
.WORD "DB ;:DRIVER NAME
.BYTE MULUN$;DEVICE CODE
.BYTE 11 ;RETURNED DEVICE STATUS (INT DEVICE TYPE)
.WORD BCODE ;BOOT CODE OFFSET
UNIT: .BYTE ‘A ;UNIT @ (INTIAL REV # A)
ERRB: BYTE '} ;ERROR STATUS (INTIAL PATCH # 1)
CMDREG: 176700 ;COMMAND REGISTER ADDR
WCOUNT: 0 ;WORD COUNT
BUSADR: 0 ;BUS ADDRESS
BLOCK: O :BLOCK NUMBER
COMD: O ; COMMAND
DIRPTR: DIRBLK ;POINTS TO 1ST DIR BLOCK.
ASNAM: 0 ;FOR MONITOR COMPATIBILITY

PAREND:

——— - —

.PAGE
SBTTL DIRBLK TABLE

DIRBLK: 3 i 18T l.FD BLOCK ADDR
170. ;NUMBER_OF UFD BLOCKS
173, :1ST BIT MAP BLOCK ADDR
50. :NUMBER OF MAP BLOCKS
1 :P‘FDI BLOCK ADDR
1002 : VERSION 2 FLAG (NOT UPDATED)
48000. HAX NUMBER OF BLOCKS ON DEVICE
255. # OF BLOCKS TO PREALLOCATE AT ZERO
1 sINTERLEAVE FACTOR
0 :B00T_BLOCK #
MONBLK: 223. :MONITOR CORE IMAGE BLOCK #
0 iMFD REFRESHED FLAG. 0=NO, NON 0=YES

SBTTL LOCAL DATA

ECCPAT: .WORD 0,0
.SBTTL ERROR MESSAGES

MWTERR: .ASCIZ <40><40>'? WT ERR’

MRDERR: .ASCIZ <40><40>'? RD ERR'
ILLERR: .ASCIZ <40><40>'? ILLEGAL CMND ERR’

.EVEN

:STORAGE FOR ECC CORRECTION

SEQ 0024

Mo

.PAGE

.SBTTL MAIN DISPATCH ROUTINE
R bbb L LI T R L LI I LI

; DISPATCH ROUTINE FOR DRIVER

THIS ROUTINE RECEIVES CONTROL FROM A UTILITY
OR DRVCOM. IT EXAMINES THE COMMAND CODE IN
XCO(RS) IN THE DDB, AND CALLS THE APPROPRIATE

LOCAL FUNCTION.
; T:
; XCOCRS)
; OUTPUT:
- CALLS APPROPRIATE INTERNAL FUNCTION.
; TESTS ERROR BYTE BEFORE RETURN
- REGISTERS CHANGED:
;......“.‘.“‘...‘....'..‘.“..“““‘....*.“.““.‘.““‘*“‘
DISPAT: MOV RO,-(SP) . SAVE
MOV Rl -C3P)

MOV R4,-(SP)

MOV PC.R1 ;: TRUE ADDRESS
SuB #..R1 ;DIFFERENCE BETWEEN TRUE &
; APPARENT
MOV #TABLE-2.R0O ;00 A TABLE SEARCH
ADD R1,RO ;GET REAL ADDRESS
10§: 187 (RO)-. :TO NEXT FUNCTION
187 (RO) END OF TABLE ?
BMI 110¢ ;MI = YES
CMP (RO)o XCO(RS) IS IT OUR FUNCTION ?
BNE NE NO
ADD (RO) R1 ;ELSE GET REAL ADDRESS
JSR PC, (Rl) ;AND DO IT
BR 2404 AND LEAVE
; HERE IF ILLEGAL FUNCTION
110¢: $ABORT #ILLERR ;NOT LEGAL COMMAND
MOVB #-1,XER(RS) ; SIGNAL
240%: MOV (SP)+ R4 ;RESTORE
MOV (SP)+,R3
MOV (SP)+,Re
MOV (SP)+,R1
MOV (SP)+,RO S ESE
1578 XER(RS) ;:Set error indicator
RTS PC
;FUNCTION TABLE - FIRST ELEMENT IS FUNCTION, SECOND IS ROUTINE
TABLE: .WORD INITS$,INIT ;INITIALIZE
.WORD RES$FN,RESTOR ;MONITOR RESTORE
.WORD READ$,DRIVER ;BLOCK READ
LWORD WRITES$,DRIVER ;BLOCK WRITE

.WORD -1 ;END OF TABLE

SEQ 0025

.PAGE

.SBTTL MAIN ROUTINE: INIT

R L L T T T T T L Rttt
;ROUTINE TO INITIALIZE THE DEVICE

:INPUTS:

 OUTPUTS :
:ROUTINES CALLED:
:REGISTERS CHANGED: NONE

o= ERR R R R ok ok o o o o o o o ook o o e o ok ok ook o ook o ol e ok ok ook o ool ol ok ok ook ok o ke ok ko ok

INIT: CLRB XER(RS) ;ASSUME GOOD RESULT
RTS PC

SEQ 0026

- _Eézg__

.PAGE
.SBTTL MAIN ROUTINE: RESTORE SEQ 0027

codbtttdt bbbttt btk it bRt iRk bbb bbb bbb bbbk kbbb k&

: ROUTINE TO READ PART OF THE MONITOR CORE IMAGE

' CALL AS FOLLOWS:
- PUT BLOCK NUMBER RELATIVE TO MONITOR IN XDTCRS)

H

: PUT NUMBER OF WORDS TO READ IN XWC(RS)
: PUT ADDRESS TO READ INTO IN XBA(RS)

: PUT REWS$FN IN XCOCRS)

: JSR PC,3DIS(RS)

: GOOD RETURN:DATA READ

. ERROR RETURN: DIS TESTS XERCRS) BEFORE RETURN

: ROUTINES CALLED: DIS(RS)
: REGISTERS CHANGED: NONE

HER L A A A A 2 2 2 2 2 2 2 At A A A A R R R R P R R R]

RESTOR: ADD MONBLK,XDT(RS) ;MAKE BLK NUMBER RELATIVE T0 0
MOV SREADS ,XCO(RS) ;D0 A READ FUNCTION
JSR :E.BDIS(RS) :LET DRIVER DO IT

— e —— —— . - -

.PAGE

.SBTTL MAIN ROUTINE: DRIVER

R A R A 2 A L A R R R R R T T T PR R

; READ-WRITE DRIVER FOR THE RJUPO4

: CALLED FROM DISPATCH
PERFORMS READ$ AND WRITE$ FUNCTIONS

-

RPDRV1:

T$:

4%-

10%:

GOOD RETURN:

C3

TRANSFER EFFECTED, XER(RS) CLEARED

ERROR RETURN:

MESSAGE TYPED, XER(RS) NONZERO

REGISTERS CHANGED:

RO,R1,.R2,.R3,.R4

XER(RS)

¢11..R4

R4

334

(R5),.R3

XDN(RS),RO

#177400,R0

RO,RPCS2(R3)

¢10000, RPOF(RB)

#23,(R3)

XUC(RS) RPUC(R3)
RPUC(R3)

XBA(RS),RPBA(R3)
XDT(RS).R1

#22. ,R2

RO

R2.R1
2%
RO
1s

R2.R1
Rl.‘(sp)
R1

£19.,R2
R2,R0O
S

(SP).,RO
RO,RPDA(RZ)
R1,RPDC(RZ)
#READS , XCO(RS)

10%
#RJREAD, (R3)
30¢
SRJWRIT,(R3Z)

ASSUHE SUCCESSFUL RESULT

R LA A A A A A R A R L R R R R P R R R R S R R SRR PSR T Y]

DRIVER:

OF TIMES TO RETRY ON ERRORS

.SHOULD WE CONTINUE?
:NO,SO REPORT ERROR
:DEVICE ADR

;:GET _UNIT NUMBER
:STRIP OFF ANY JUNK
;LOAD RESULT INTC RPCS2

:SET 16 BIT FORMAT IN RFOF REG

;D0 A FACK ACK TO SET Vv BIT
;WORD COUNT

:THO'S COMPLEMENT OF WC
;BUS ADR

:BLOC_NUMBER

:22 SECTORS PER TRACK
;:DIVIDE BY SECTOR SIZE
;UP TRACK COUNT

;WENT TO0 FAR
:PUT SECTOR # ON STACK

;19 TRACKS PER CYLINDER
;DIVIDE BY TRACKS PER CYL
;70 GET TRACK AND CYL ¢
;UP CYL COUNT IN Rl

;RO IS HOLDING TRACK ¢
;MAKE UP FOR GOING T0O FAR
:MOVE TRACK ¢ TO LEFT

;0R IN RIGHT SIDE (SECTOR)
:TO DSK ADR REG

;70 DSK CYL ADR REG

:1S A READ ?

;NE = NO, MUST BE A WRITE
ELSE START IT7

;START WRITE

Sk e comm———————— . —

SEQ 0028

32s:
35s:

33s:

26$:
208:

#DONE 'ERROR, (R3)
304

204
#100000,RPER1(R3)
324

#100,RPER1(R3)
324

PC,ECCCOR
040 ,RPCS2(R3)
(R3)
318
20$

(R3),R0O
#40,RPCS2(R3)
(R3)

358

220000, RO
RPDRV1

XER(RS)
XCO(RS),#READS
36

SMUTERR

204
#MRDERR
PC

D3

;:DONE OR ERROR?
;NEITHER

; DONE

;:WAS A DATA CHECK ERROR?
;EQ = NO

;:YES, IS IT CORRECTABLE?
NE = NO

:ELSE CORRECT 17
:CLEAR_ERROR CONDITION
:WAIT TILL DONE

;AND LEAVE

:SAVE _ERROR INFORMATION
:CONTROLLER CLEAR
:DONE?

;WAS IT HARD ERROR?
:NO

; INDICATE ERROR
;WAS ERROR ON READ?

: YES

;PRINT WRITE ERROR
;RETURN TO CALLER

;PRINT READ ERROR

SEQ 0029

.PAGE

.SBTTL ROUTINE ECCCOR

HERA S A S 2 2 D A Sl A A A R R R R R R RS SRR P R SR R Y

ECCCOR: MOV

: CORRECT A SOFT ECC ERROR
: (ALGORITHM ADAPTED FROM THAT IN CZR6PD)
USES HARDWARE ERROR BURST PATTERN TO CORRECT A FAULTY

SEQUENCE OF UP TO 11 BITS
CALLED BY DRIVER

GOOD RETURN:
DATA CORRECTED IN BUFFER

REGISTERS CHSNGED:

RS."(SP)
RPEC1(R3),R1
XBA(RS),R3
XWC(RS).R4
R4

RS.'(SP)

g177760 .RO

ECCPAT
ECCPAT.2
RO

3$

(R3),RO
ECCPAT,R1
ECCPAT,(R3)
RO,R1
R1,(R3).
(SP),.R3

10¢

(R3),R0
ECCPAT.2,R1
ECCPAT.2,(R3)
RO,R1
R1,(R3)

(SP)e
(5P)+ ,R3
PC

RS

--‘........‘..“..i‘t...i.i“‘....‘t“t.“t‘..‘ii.‘.il“‘.ttt“

RPEC2(R3),ECCPAT
ECCPAT.2

;:ERROR BURST PATTERN

:g{b& SHIFT INTO THIS

;:ERROR BURST POS COUNT

;:BUFFER ADDRESS

:WORD COUNT

NOH BYTE COUNT

.CALCULATE END OF
TRANSFER

sCONVERT TO BIT DISPLACEMENT
:CDHPUTE BYTE DISPLACEMENT

;WORD DISPLACEMENT
;ERROR WITHIN TRANSFER?

:HIS = NO, RETURN

:COMPUTE BUFFER ADDRESS OF ERR
:STARTING BIT oxspuc IN WORD
:EQ = ON WORD BOUNDAR

:SHIFT PATTERN 1 BIT LEFT
;POOR MAN'S ASHC
;:DECREMENT COUNT

;UNTIL DONE

;CORRECT FIRST WORD
;:WITH XOR OF PATTERN
;POOR MAN'S XOR

;CHECK IF SECOND WORD IS
:IN BUFFER, EQ= NO, ALL DONE
;ELSE DO NEXT WORD

;BUMP TEMP STORAGE

SEQ 0030

F3

:SECONDARY BOOT CODE AREA

.PAGE
.SBTTL BOOTSTRAP REVISION HISTORY

SREV DATE
: 1.0 12-JuL-78
: 1.1 17-NOV-78
: 1.2 12-JUL-82
: 1.3 29-MAR-83
; 21-FEB-84

INITIAL ISSUE

MAKE COMPATABLE WITH XXDP«

MODIFIED TO SUIT VAX ASSEMBLER

WHEN TRYING TO BOOT TO UNIT OTHER
THAN O AND UNIT O NOT ON BUSS, A
HALT AT 216 OCCURS

V2 CHANGE STACK AND MON SIZE

SEQ 0031

.PAGE
.SBTTL

RBBOOT:

RBCSA:
START:

STARPT1:

S5¢:
10¢:

1S¢:

20$:

25%:

70%:

G3

BOOTSTRAP

.NLIST CND

LIST MEB

RBCS1 =0

RBWC .2

RBBA = 4
RBDA =6
RBCS2 = 10
RBDS = 12
RBDC = 34

BEGIN = 1046
MONCNT = 20000-256 :SKIP BOOT BLOCK
NOP
BR START :START BOOT ROUTINE
.WORD 6
HALT : TRAP CATCHER
.WORD 12 :RESERVED INSTRUCTION ERR
HALT ; TRAP CATCHER

.BLkB 4

.WORD 176700 ;RJPO4 DEFAULT CSR ADDRESS
NOP
BR START1

.BLKB 12

.WORD 0,0

.BLKB 24

#60000, SP
MOV RBCSA,RS
MOV $23,(RS)
MOV RBCS2(RS),R2
BIC #177770,R2
MOV 240,RBCS2(RS)
MOV R2,RBCS2(RS)
BIT #100200, (RS)

BEQ 10¢
BMI 25%
1578 RBDS(RS)
BPL 15%

MOV #-MONCNT ,RBWC(RS)
MOV #1000,RBBA(RS)
MOV #5003.1,RBDA(RS)
MOV #0,RBDC(RS)

MOV #71,(R5)

81T 3320200.(95)

ePL 30%
MOV (R5),RO
MOV RBCS2(RS),R1

BR 5
MOV RS,R1
JHMP I#BEGIN

:SET UP STACK

:GET RBCS1 ADDRESS

;D0 PACK ACK TO SET Vv BIT
:GET UNIT NUMBER

;CLEAR CONTROLLER
;SET UNIT NUMBER
READY?

RROR
.DRIVE READY?

:SET UP WORD COUNT
;LOAD AT LOCATION 1000
;BLOCK # OF MONITOR
;CYL @

;D0 READ COMMAND

;:DONE OR ERROR?

;:NOT DONE

; DONE
;SAVE STATUS
;AND ANY ERRORS
;HALT ON ERROR
.ox TRY AGAIN
Put CSR ADDRESS IN DRIVER TABLE
START UP HIMON

SEQ 0032

H3

Appendix: B - Assembly and Linking Instructions

o e e R e R R R R R G R W R R R MR R R T R R W R R R

The Driver and Boot must be merged together and then
assmbled as a .MAC file. They should be maintained

separetly as shown in appendix A, that is they have
their own revision blocks. Assembling them togcthcr 1
helps to eliminate double references that would otherwise
occur. References to an absolute location by the BOOT code
must be done via an offset from BCODE:, which will be at

absolute zero during the boot operation.

R R R R O R R R R R R R R R R R R R e R e e R e e e e e e e e e e

R e O R R e e R e e e R R e R R R R R R R R R R e e e e e e e e e

Command file to create a XXDP V2 DB DRIVER

Set the address limits for the driver and create
@ binary file

MCR TKB
98/NOHH/NOH0/50.DB/-SP=DB

PAR=DUMMY:0:3200
STACK=0
/

$ WRITE SYSSOUTPUT " Now type TKBBIN <CR> , *

L LT R T T .

$ WRITE SYSSOUTPUT ” UWhen prompted for the file name enter DB."

$ WRITE SYS$OUTPUT " will create a driver called DB.BIN .~

— . ———

SEQ 0033

>

- e

; XXDP+ Version 2 Equate Definitions

; DEVICE COMMAND CODES
INITS =0 : INITIALIZE DEVICE and BRING ON LINE
READS = 1 : READ
WRITES = 2 : WRITE
RES$FN = 3 : RESTORE FUNCTION for XXDP-SM
RFSSFN = 100 ; REFORMAT SINGLE DENSITY
RFDSFN = 101 ; REFORMAT DOUBLE DENSITY
PRESTP = 200 ; TAPE - PREPARE
REWSTP = 201 ; TAPE - REWIND
SPR$TP = 202 : TAPE - REVERSE SPACE
WHDSTF = 203 : TAPE - WRITE HEADER
RHD$TP = 204 : TAPE - READ HEADER
SEF$TP = 206 : TAPE - SKIP to EOF
WEF$TP = 207 ; TAPE - WRITE EOF
SET$TP = 210 : TAPE - SKIP to EOT
STASTP = 211 : TAPE - RETURN STATUS CODE
DENSFN = 374 ; RETURN DENSITY (O = LOW, 1 = HIGH)
CMPSFN = 375 ; COMPUT BLOCK # from SECTOR
WRTSFN = 376 : WRITE absolute SECTOR
REDSFN = 377 ; READ sbsolute SECTOR

: DEVICE CODE BYTE
BBSUPS = 2 ; BAD BLOCK SUPPORT
NORENS = 4 : TAPE CANNOT RENAME FILE
NODIRS - 10 : NOT A DIRECTORY DEVICE
TAPEDS = 20 ; IS A TAPE DEVICE

REFDN$ = 40 ; SUPPORTS SINGLE/DOUBLE DENSITY FORMAT
MULUN$ = 100 ; DRIVER SUPPORTS MULTIPLE UNITS/DRIVER

DEVICE RETURNED STATUS BYTE

LA TR 1}

; TAPE IS AT BOT
; TAPE IS AT TAPE MARK
10 ; TAPE IS AT EOT

BOTTPS$
TMKTP$
EOTTPS

nonow
o

SEQ 0034

J3

The Device Type Code (DTC) is placed into byte location 41 by the
mon i tor cvcrg time a binary file is run. This byte is then -
e

designated the “load medium indicator”. DTC's are assigned as
follows:
DTC DEVICE Type XXDP+ Version Notes
0 r tage or ACTi1 3.3
1 (DECtape) i.3
2 RKOS (disk) 1.3
A %
magtape .
S TAll (cassette) 1.3
6 TU16/TMO2 (magtape) 1.3 2.0
7 not used
10 RX01 (fl disk) 1.3
11 RP04/R505/RP06 (disk) 1.3 2.0
12 RS03/RS04 (disk) 3.3
13 RK06/RK07 (disk) 3.3 2.0
14 RL0O1/02 (disk) 1.3 2.0
15 RX02 (disk) 3.3 2.0
16 RM02/RMO3 (disk) 1.3 2.0
17 TUS8 (cassette) 1.3 2.0
20 TUS8/PDT11 (cassette) 1.3
21 7S04 (tape) 1.3 2.0
22 TM78 (tape) 1.3
23 UDA (disk MSCP) 1.3 2.0 1
24 TR79 (tape) 3.3
25 RD/RX50 (disk) 1.3 2.0 i
26 RC2S (disk) 1.3 2.0 1
27 TKS0 (tape MSCP - TMSCP) 3.3 2.0

R e e W R R A R e e R R R W R R R R R R R R R R RS R M SR S R e R R R R S R R TR A e e R R T

1. These are MSCP class devices end under XXDP V2 are
handled by one driver which uses DTC = 23

——

SEQ 0035

